TREATMENT HETEROGENEITY AND POTENTIAL OUTCOMES IN LINEAR MIXED EFFECTS MODELS
نویسندگان
چکیده
منابع مشابه
Multivariate linear mixed models for multiple outcomes.
We propose a multivariate linear mixed (MLMM) for the analysis of multiple outcomes, which generalizes the latent variable model of Sammel and Ryan. The proposed model assumes a flexible correlation structure among the multiple outcomes, and allows a global test of the impact of exposure across outcomes. In contrast to the Sammel-Ryan model, the MLMM separates the mean and correlation parameter...
متن کاملRandom effects selection in linear mixed models.
We address the important practical problem of how to select the random effects component in a linear mixed model. A hierarchical Bayesian model is used to identify any random effect with zero variance. The proposed approach reparameterizes the mixed model so that functions of the covariance parameters of the random effects distribution are incorporated as regression coefficients on standard nor...
متن کاملIdentifiability in linear mixed effects models
In mixed effects model, observations are a function of fixed and random effects and an error term. This structure determines a very specific structure for the variances and covariances of these observations. Unfortunately, the specific parameters of this variance/covariance structure might not be identifiable. Nonidentifiability can lead to complications in numerical estimation algorithms or wo...
متن کاملRandom Effects in Generalized Linear Mixed Models
In this chapter, we examine the use of special forms of correlated random e ects in the generalized linear mixed model (GLMM) setting. A special feature of our GLMM is the inclusion of random residual e ects to account for lack of t due to extra variation, outliers and other unexplained sources of variation. For random e ects, we consider, in particular, the correlation structure and improper p...
متن کاملVariable Selection in Linear Mixed Effects Models.
This paper is concerned with the selection and estimation of fixed and random effects in linear mixed effects models. We propose a class of nonconcave penalized profile likelihood methods for selecting and estimating important fixed effects. To overcome the difficulty of unknown covariance matrix of random effects, we propose to use a proxy matrix in the penalized profile likelihood. We establi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Conference on Applied Statistics in Agriculture
سال: 2012
ISSN: 2475-7772
DOI: 10.4148/2475-7772.1037